Python中的ORM框架Databases实战
近年来,Python成为了一种高效、易用、且灵活的编程语言,而在Python的开发领域中,Databases ORM框架的应用越来越普遍。Databases是一个简单直观、轻量级的ORM框架,它支持多种数据库,包括但不限于MySQL、PostgreSQL、SQLite和Microsoft SQL Server。本文将为你详细介绍Databases框架,以及它在Python开发中的具体应用。
一、ORM框架的概念
ORM全称为对象关系映射(Object Relational Mapping),是一种将关系型数据库表与Python对象之间进行映射,从而实现开发者在编程过程中不再需要进行SQL语句操作的技术, ORM框架在Python中的应用,为开发者提供了更多选择,使得程序开发更加便捷。
二、Databases框架
Databases是由Django ORM的开发者Andrew Goodwin所开发的一款简洁的ORM框架,其最大特点就是轻量级,以及方便、易于使用,而且支持多种数据库,包括MySQL、PostgreSQL、SQLite和Microsoft SQL Server等多种类型的数据库。
- 安装Databases框架
针对Databases框架的安装,可以使用pip进行安装,命令如下:
pip install databases==0.4.*
- 连接数据库
在使用Databases框架进行开发之前,需要先连接到数据库中。连接数据库所需参数包括数据库类型、主机名、数据库名称、用户名和密码等。本次开发中,我们尝试连接到MySQL数据库中,代码如下:
import databases DATABASE_URL = "mysql://user:password@hostname/database_name" database = databases.Database(DATABASE_URL)
这里,QAQsaaspassword是连接数据库的密码,askdnsadn312as是连接数据库的用户名,localhost是数据库所在的主机名或IP地址,my_database是数据库的名称。
- 创建表格与列
Databases框架支持SQL表达式语言来创建复杂的查询语句,从而使得开发者能够更灵活的控制SQL执行过程。在Databases框架中,我们可以使用Table类来创建表格,使用Column类来创建列。
表格创建代码如下:
import sqlalchemy metadata = sqlalchemy.MetaData() users = sqlalchemy.Table( "users", metadata, sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), sqlalchemy.Column("username", sqlalchemy.String), sqlalchemy.Column("password", sqlalchemy.String), sqlalchemy.Column("email", sqlalchemy.String), )
这里,我们使用了SQLAlchemy中的MetaData对象,通过定义一个users表格,创建了四个字段(id、username、password和email)。
- 执行SQL语句
Databases框架也提供了直接使用SQL语句进行操作的方法,这种方法更加灵活。可以通过execute()方法来实现SQL语句的执行,代码如下:
result = await database.execute(query)
其中query代表的是SQL语句代码,result则是执行结果,当执行成功时,它会返回一个由dict类型组成的list,每个dict代表SQL查询结果中的一条记录。
5.在Databases中使用ORM
Databases框架同样支持ORM的方式来操作SQL语句,对于开发者而言,更加便捷。ORM的方式有助于将对象关系映射到数据库上,使得代码具有更好的可读性和可维护性。
使用ORM的方式,我们可以通过定义模型的方式来操作数据库,代码如下:
import sqlalchemy metadata = sqlalchemy.MetaData() users = sqlalchemy.Table( "users", metadata, sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True), sqlalchemy.Column("username", sqlalchemy.String), sqlalchemy.Column("password", sqlalchemy.String), sqlalchemy.Column("email", sqlalchemy.String), ) class UserModel: id: int username: str password: str email: str __tablename__ = "users" query: sq.Select def __init__(self, **kwargs): for key, value in kwargs.items(): setattr(self, key, value)
这里,我们定义了一个UserModel模型类,代表我们的数据表对象,同时我们通过简单的定义,即可完成SQLAlchemy中表、列的定义,从而使其ORM映射到数据库上,方便快捷,易于维护。
三、应用实例
在此,我们以一个简单的博客应用为例,演示Databases框架的具体操作。
1.连接到数据库
进行数据库连接所需的信息也非常简单,如下代码所示:
import databases DATABASE_URL = "mysql://user:password@hostname/database_name" database = databases.Database(DATABASE_URL)
这里的DATABASE_URL指定了连接到MySQL的各项参数,以此来连接到我们的数据库系统。
2.定义模型
在这个博客示例中,我们需要定义两个数据模型,一个是Blog模型,代表博客文章对象,生成代码如下:
class Blog: id: int title: str description: str content: str __tablename__ = "blog" query: sq.Select def __init__(self, **kwargs): for key, value in kwargs.items(): setattr(self, key, value)
另一个是User模型,代表用户对象,生成代码如下:
class User: id: int name: str email: str password: str __tablename__ = "user" query: sq.Select def __init__(self, **kwargs): for key, value in kwargs.items(): setattr(self, key, value)
类似地,我们通过简单的定义,使其ORM映射到我们连接的MySQL数据库上。
3.创建表格
由于我们所操作的数据库系统为MySQL,因此我们需要创建对应的表格,生成代码如下:
CREATE TABLE `blog` ( `id` int(11) unsigned NOT NULL AUTO_INCREMENT, `title` varchar(100) DEFAULT NULL, `description` varchar(100) DEFAULT NULL, `content` text, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; CREATE TABLE `user` ( `id` int(11) unsigned NOT NULL AUTO_INCREMENT, `name` varchar(45) DEFAULT NULL, `email` varchar(100) DEFAULT NULL, `password` varchar(100) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
4.插入数据
我们可以使用ORM的方式很方便地输入数据,生成代码如下:
async def create_blog_post(title: str, description: str, content: str): query = blog.insert().values(title=title, description=description, content=content) return await database.execute(query) async def create_user(name: str, email: str, password: str): query = user.insert().values(name=name, email=email, password=password) return await database.execute(query)
这里我们使用了insert()方法来完成数据插入的操作,具有很好的可读性,方便开发者更好地维护代码。
5.查询数据
Databases框架同样支持执行查询操作,如下代码所示:
async def get_blog_post(id: int): query = blog.select().where(blog.c.id == id) return await database.fetch_one(query) async def get_all_users(): query = user.select() return await database.fetch_all(query) async def get_users_by_email(email: str): query = user.select().where(user.c.email == email) return await database.fetch_all(query)
这里我们使用了select()方法,拼接条件获取一个生成器,遍历之时返回数对。我们也可以通过使用查询数据的方式,来实现数据的筛选和排序。
总结
Databases框架是一个针对Python开发者而言的一个灵活、易用、轻量级的ORM框架,它可以轻松地支持多种数据库,方便开发者进行数据的存储、操作、筛选和排序等。本文从连接数据库到定义模型的操作,再到数据插入和查询操作,演示了Databases框架的灵活性以及易用性,方便开发者更高效的开发Python程序。
以上就是Python中的ORM框架Databases实战的详细内容,更多请关注www.sxiaw.com其它相关文章!