如何使用回溯算法解决多商品优惠问题?
解题思路
对于多商品优惠问题,算法核心是穷举所有可能的优惠组合,并选出其中最优解。本文采用回溯算法实现,步骤如下:
- 计算单件商品折扣:根据每个商品的优惠折扣信息和数量计算其折扣后总价。
- 分组分类满减优惠:将满减优惠分组,每组优惠只能应用于同一组商品。
- 穷举满减组合:使用回溯算法穷举所有可能的满减组合,找出总折扣最大的组合。
- 确定最佳方案:选择总折扣最大的组合,并计算最终优惠后的总价。
代码示例
以下 javascript 代码提供了具体的解题方案:
let tb_goods = [ { id: 1, goodsName: "A", price: 10, spceList: [101, 102, 105], }, { id: 2, goodsName: "B", price: 6, spceList: [101, 102, 105, 106], }, { id: 3, goodsName: "C", price: 7, spceList: [101, 103, 107], }, { id: 4, goodsName: "D", price: 7, spceList: [101, 104, 107], }, ]; let tb_spce = [ { id: 101, type: "满减", msg: "满20减2", full: 20, reduction: 2, }, { id: 102, type: "满减", msg: "满35减6", full: 35, reduction: 6, }, { id: 103, type: "满减", msg: "满28减3", full: 28, reduction: 3, }, { id: 104, type: "满减", msg: "满30减5", full: 30, reduction: 5, }, { id: 105, type: "折扣", msg: "2件9.5折", full: 2, reduction: 0.95, }, { id: 106, type: "折扣", msg: "3件7折", full: 3, reduction: 0.7, }, { id: 107, type: "折扣", msg: "2件8折", full: 2, reduction: 0.8, }, ]; let testBuy = [ { goodsId: 1, num: 3, }, { goodsId: 2, num: 6, }, { goodsId: 3, num: 3, }, ]; const compute = (goods) => { // 初始化变量 const disGoodsMap = new Map(); let total = 0; // 计算单件商品折扣 for (let good of goods) { const g = tb_goods.find((g) => good.goodsId === g.id); good.price = g.price; good.totalPrice = g.price * good.num; good.totalDisPrice = good.totalPrice; // 应用折扣 g.spceList.forEach((id) => { let ts = tb_spce.find((s) => s.id === id); if (ts.type === "折扣") { if (!ts || good.num { disComposeBacktrace(0, v, k.full, k.reduction, [], compose, k.id); }); // 穷举满减组合 const res = { total: total, discount: 0, compose: [] }; composeBacktrace(0, compose, [], new Set(), res, 0); res.total = res.total - res.discount; return res; }; // 穷举满减组合回溯函数 const composeBacktrace = (start, composes, trace, memo, res, discount) => { if (discount > res.discount) { res.discount = discount; res.compose = [...trace]; } for (let i = start; i memo.has(c[0]))) continue; trace.push(cmp); cmp.forEach((c) => memo.add(c[0])); composeBacktrace(i + 1, composes, trace, memo, res, discount + cmp[0][1]); trace.pop(); cmp.forEach((c) => memo.delete(c[0])); } }; // 分组满减优惠回溯函数 const disComposeBacktrace = ( start, goods, target, discount, memo = [], res = [], disId ) => { if (target
以上就是如何使用回溯算法解决多商品优惠问题?的详细内容,更多请关注其它相关文章!